□ 연구개요 본 연구의 목표는 자기권 내에서 흔히 발생하는 플라스마 파동의 한 종류인 자기음파 파동의 생성 및 전파를 이해하고, 이 파동이 방사선 대를 구성하는 고에너지 전자에 미치는 영향을 정량적으로 조사하는 것이다. 입자-파동 상호작용이 방사선대를 구성하는 고에너지 전자의 양과 에너지를 결정한다는 것은 최근 종료된 NASA의 Van Allen Probe 미션으로부터 확실시되었다. 자기권 내에서 흔히 발생하는 플라스마 파동의 한 종류인 magnetosonic 파동 또한 입자 -파동 상호작용으로 이들에게 영향을 끼칠 수 있다고 알려져 있다. 그러나, 다른 파동들과 다르게 magnetosonic 파동의 본질에 대해서 더 깊은 연구가 필요하며, 이를 바탕으로 이 파동이 방사선대를 구성하는 고에너지 전자에 미치는 영향을 정량화하는 것이 필요하다. 본 연구에서는 particle-in-cell 코드를 이용하여, 현실적인 다차원 공간에서 이 파동을 구현하고, 이로부터 관측적 제한으로 얻기 힘든 파동의 특성을 유추하며, 구현된 파동 내에서 운동하는 고에너지 전자들의 궤적을 추적 함으로써 전자에 미치는 영향을 정량적으로 알아보고자 한다. □ 연구 목표대비 연구결과 첫째, 관측적 사실들을 최대한 반영한 particle-in-cell 시뮬레이션을 수행하여 얻은 결과를 분석한 결과, 링 형태의 양성자 분포가 넓은 위도상에 분포함에도 불구하고, 관측에서 나타나는 것과 같이 발생한 자기음파의 세기가 자기 적도 근처에서 피크를 이루고 적도에서 벗어날수록 그 세기가 지수함수적으로 감소함을 보였다. 우리는 적도에서 벗어날수록 자기장 세기 변화에 기인해 파동이 자기 적도를 향하는 굴절(refraction)을 겪어 파동의 지속적 증폭이 방해받지만, 적도 근처에선 자기력선의 곡률 변화가 미약해 한 장소에서 상대적으로 오래 머물면서 연속적으로 증폭될 수 있음을 밝혔다. 둘째, 자기음파의 수직 방향 전파 특성을 고려한 양성자 산란을 결정짓는 확산계수 계산 방법을 제시하였다. 기존의 확산계수 계산 방법은 수식의 발산을 피하고자 수직 방향의 파워를 인위적으로 제한해 왔다. 우리는 준 수직 방향의 파동 성분만큼(또는 그보다 더 큰) 수직 방향이 파동 성분도 환전류대 양성자 산란에 기여함을 보여주었다. 셋째, 자기음파와 상호작용에 의한 양성자 산란이 기존 믿음과 다르게 낮은 에너지 영역에서는 비효율적임을 이론적으로, 관측적으로 보여주었다. 따라서, 우리는 기존에 제시된 자기음파-저온 양성자-EMIC 파동의 에너지 전달 과정의 첫 번째 연결 고리를 재고해야 함을 제시하였다. 넷째, 산소 이온 자기음파의 발생빈도와 특성을 처음으로 통계적으로 조사하였다. 우리는 이 파동의 공간적, 시간적 분포와 파동의 편극 특성을 통계적으로 보여주었고, Ion Bernstein 불안정성을 일으킬 수 있는 ring-like 분포함수가 동반되는 것을 확인하였으며, 이 파동에 의해 가열됐을 저온의 이온 분포함수의 특징도 발견하였다. □ 연구개발성과의 활용 계획 및 기대효과(연구개발결과의 중요성) 지구 방사선대의 고에너지 입자들은 인공위성에 작게는 single event upset과 위성 내부 대전, 크게 는 위성 통신두절 및 내부 시스템 손상 등을 유발하여 군사적, 사회적, 경제적 피해를 줄 수 있다. 따라서 방사선대 양의 정확한 예·경보는 인공위성에 줄 수 있는 피해를 미리 예방하는 데 중요하다. 자기권에서 입자-파동 상호작용이 고에너지 입자의 운동을 결정하는 것은 이미 잘 알려져 있다. 이 연구에서 얻어진 향상된 자기음파의 물리적 이해가 정확한 방사선대 예측에 큰 역할을 할 것이다. (출처 : 연구결과 요약문 2p)
- 연구책임자 : 민경국
- 주관연구기관 : 충남대학교
- 발행년도 : 20240300
- Keyword : 1. 플라스마 파동 및 불안정성;입자-파동 상호작용;수치 모델링;방사선대;자기권 자기음파; 2. Plasma waves and kinetic instability;Wave-particle interactions;Particle-in-cell simulation;Radiation belts;Magnetosonic waves;