All 3,287,370 Page 64/328,737
-
2025
AbstractInnovation in synthesis methodologies is crucial for advancing the discovery of new materials. This work reports the electrosynthesis of a [Au13(4‐tBuPhC≡C)2(Dppe)5]Cl3 nanocluster (Au13 NC) protected by alkynyl and phosphine ligands. From simple precursor, HAuCl4 and ligands, the whole synthesis is driven by a constant potential in single electrolytic cell. X‐ray crystallography determines its total structure. Control experiments, cyclic voltammetry, Proton Nuclear Magnetic Resonance (1H NMR), gas chromatography, and other characterizations demonstrate that a critical tetranuclear Au(I) complex defines the electrochemical redox behavior of the reaction solution. The critical role of a base (e.g., triethylamine) is to suppress the hydrogen evolution reaction at the cathode, paving the way for the reduction of Au ions. To resolve the problem of over‐reduction and deposition of Au on the cathode, pulsed electrolysis, which is specific to electrosynthesis is employed. It significantly improves the reaction rate and the isolated yield of Au13. To extend the application scope, another four NCs protected by different ligands, [Au13(4‐FPhC≡C)2(Dppe)5]Cl3, [Au8(2‐CF3PhC≡C)2(Dppp)4](PF6)2, [Au11(Dppp)5]Cl3, and [Au8(SC2H4Ph)2(Dppp)4]Cl2 are synthesized electrochemically, demonstrating the versatility of the strategy.- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
AbstractPurposeDue to the tight curvature in their design, ring applicators are usually associated with large positioning errors. The standard practice to correct for these deviations based on global offsets may not be sufficient to comply with the recommended tolerance. In this work, we investigate two methods for applicator reconstruction that implement position‐dependent source offset corrections.MethodsMeasurements were performed using the Varian Interstitial PEEK Ring 60° and a Varian BRAVOS afterloader. Source positioning was characterized by means of autoradiographs acquired for three different loading patterns and three 192Ir sources over a period of 5 months. Additionally, the actual source path was determined by means of a series of planar kV images for different dummy cable positions. The first position‐dependent correction method consists of locally modifying the radius of the reconstructed source path according to the measured offsets. The second method, recommended by Varian, simulates a bidirectional movement of the source during applicator reconstruction to compensate for positioning errors.ResultsAutoradiographs showed a quasi‐linear increase of the dwell position offsets, with a negligible error at the tip and a value close to 3 mm at the end of the ring. This result, consistent with a circular wire movement with an effective radius 0.5 mm larger than the nominal value, was in agreement with the observations from the kV images. After implementation of the position‐dependent correction methods, residual positioning errors for the two methods resulted in a mean value (±1 SD) of 0.0 (±0.3) mm, and a range of [−0.7 mm, 0.7 mm].ConclusionThe two tested methods for applicator reconstruction with position‐dependent source offset corrections were able to successfully correct the positioning errors. The method recommended by the manufacturer had the additional advantages of a more straightforward implementation and the potential for use in other applicator types.- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
Abstract
Background
This work aimed to develop deep learning (DL) models for CT-free attenuation and Monte Carlo-based scatter correction (AC, SC) in quantitative 90Y SPECT imaging for improved dose calculation.
Methods
Data of 190 patients who underwent 90Y selective internal radiation therapy (SIRT) with glass microspheres was studied. Voxel-level dosimetry was performed on uncorrected and corrected SPECT images using the local energy deposition method. Three deep learning models were trained individually for AC, SC, and joint ASC using a modified 3D shifted-window UNet Transformer (Swin UNETR) architecture. Corrected and unorrected dose maps served as reference and as inputs, respectively. The data was split into train set (~ 80%) and unseen test set (~ 20%). Training was conducted in a five-fold cross-validation scheme. The trained models were tested on the unseen test set. The model’s performance was thoroughly evaluated by comparing organ- and voxel-level dosimetry results between the reference and DL-generated dose maps on the unseen test dataset. The voxel and organ-level evaluations also included Gamma analysis with three different distances to agreement (DTA (mm)) and dose difference (DD (%)) criteria to explore suitable criteria in SIRT dosimetry using SPECT.
Results
The average ± SD of the voxel-level quantitative metrics for AC task, are mean error (ME (Gy)): -0.026 ± 0.06, structural similarity index (SSIM (%)): 99.5 ± 0.25, and peak signal to noise ratio (PSNR (dB)): 47.28 ± 3.31. These values for SC task are − 0.014 ± 0.05, 99.88 ± 0.099, 55.9 ± 4, respectively. For ASC task, these values are as follows: -0.04 ± 0.06, 99.57 ± 0.33, 47.97 ± 3.6, respectively. The results of voxel level gamma evaluations with three different criteria, namely “DTA: 4.79, DD: 1%”, “DTA:10 mm, DD: 5%”, and “DTA: 15 mm, DD:10%” were around 98%. The mean absolute error (MAE (Gy)) for tumor and whole normal liver across tasks are as follows: 7.22 ± 5.9 and 1.09 ± 0.86 for AC, 8 ± 9.3 and 0.9 ± 0.8 for SC, and 11.8 ± 12.02 and 1.3 ± 0.98 for ASC, respectively.
Conclusion
We developed multiple models for three different clinically scenarios, namely AC, SC, and ASC using the patient-specific Monte Carlo scatter corrected and CT-based attenuation corrected images. These task-specific models could be beneficial to perform the essential corrections where the CT images are either not available or not reliable due to misalignment, after training with a larger dataset.
- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
AbstractSince its discovery in 1997, the single molecule surface‐enhanced Raman spectroscopy (SM‐SERS) has attracted wide interest owing to its enormous potential in many fields. However, the commercialized applications of SM‐SERS are still limited by the lack of a clear understanding of the relevant mechanism in the famous SM‐SERS experiments. In this study, a salt‐gradient model is proposed to deeply investigate the physical nature and update insights into the morphological, structural, and component evolution processes of Ag NPs from dispersed nanostructures to aggregation states in the salt‐induced aggregation SERS strategy. A gradient interface is observed, where an ultrahigh sensitivity approaching a single molecule level, has been achieved in Ag colloidal system. An unusual dissolution of Ag, the release of Ag+ ions from Ag NPs, and the final precipitation of AgCl can be evidenced. Thus, except for aggregation effect, the active AgCl packaging shell on the surface of Ag NPs remarkably improves the SERS property. This work not only reveals the physics processes and nature of SM‐SERS but also offers a new way to exploit the SM‐SERS into practical applications by means of designing different surface states of NPs and various activation compositions to meet diverse molecule systems.- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
AbstractThe benefit that antibiotics confer to the welfare of mankind is threatened by bacterial resistance. Resistance to daptomycin, a cyclic lipopeptide frequently used for the treatment of complicated bacteremia, is a prime example of this alarming situation. As the restricted number of antibacterial drug targets limits de novo development, chemical modification of existing compounds represents an alternative development option for future antimicrobials. This approach involves altering compounds to target bacteria through multiple mechanisms and/or to reinforce them against resistant strains. Herein, the conjugation of polycationic peptides to daptomycin enhances its effectiveness against a highly daptomycin‐resistant laboratory strain of Staphylococcus aureus and clinical isolates of Enterococcus faecium with reduced daptomycin sensitivity. Notably, unlike daptomycin, the activity of these conjugates does not necessarily depend on the calcium concentration. In addition to regaining bacteriolytic activity, the findings indicate the acquisition of an additional or amended mode of action as evidenced by pore formation and the disruption of membrane potential. The combination of enhanced in vitro potency, in vivo activity, and tolerability highlights the potential of this drug modification strategy in combating multidrug‐resistant bacteria.- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
Abstract
The International Fusion Materials Irradiation Facility-DEMO Oriented
Neutron Source (IFMIF-DONES) is designed mainly to test and qualify materials
for future fusion reactors by exposing them to a high energetic and intense neutron
flux, and also to develop other scientific experiments using a fraction of the neutrons
generated. The Lithium Systems are crucial to the operation of the facility, generating
and delivering the neutron flux through the interaction of a deuteron beam with a
flowing lithium target. It comprises four systems: the Target System that produces
the stable high-velocity lithium flow target and handles the substantial heat load from
the beam interaction; the Heat Removal Loops, designed to supply the liquid lithium to
the target in adequate conditions, this removing up to 10 MW through primary lithium
loops and secondary and tertiary oil and water loops; the Impurity Control System,
which controls the contents of impurities in the lithium, to reduce corrosion and
erosion phenomena, and localize the radioactive impurities; and the Lithium System
Ancillaries, providing essential support such as vacuum, gas, and electrical power to
the other systems. The design and operation of the Lithium Systems face several
significant challenges. Maintaining the stability and high velocity of the lithium flow
under extreme conditions is of paramount importance. Operating in a high-radiation
environment presents additional complexities, requiring the development of specialized
maintenance strategies in conjunction with remote handling technologies. The design
of the IFMIF-DONES Lithium System has evolved over the last years. This paper
presents the current design status, highlighting the solutions implemented to address
these challenges and to ensure the reliable and safe operation of the facility.- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :
-
2025
ABSTRACTAnionic redox reaction (ARR) can provide extra capacity beyond transition metal (TM) redox in lithium‐rich TM oxide cathodes. Practical ARR application is much hindered by the structure instability, particularly at the surface. Oxygen release has been widely accepted as the ringleader of surficial structure instability. However, the role of TM in surface stability has been much overlooked, not to mention its interplay with oxygen release. Herein, TM dissolution and oxygen release are comparatively investigated in Li1.2Ni0.2Mn0.6O2. Ni is verified to detach from the lattice counter‐intuitively despite the overwhelming stoichiometry of Mn, facilitating subsequent oxygen release of the ARR process. Intriguingly, surface reorganization occurs following regulated Ni dissolution, enabling the stabilization of the surface and elimination of oxygen release in turn. Accordingly, a novel optimization strategy is proposed by adding a relaxation step at 4.50 V within the first cycle procedure. Battery performance can be effectively improved, with voltage decay suppressed from 3.44 mV/cycle to 1.60 mV/cycle, and cycle stability improved from 66.77% to 90.01% after 100 cycles. This work provides new perspectives for clarifying ARR surface instability and guidance for optimizing ARR performance.- Book : ()
- Pub. Date : 2025
- Page :
- Keyword :