본문 바로가기

Report

All 3,251,944 Page 3/325,195

검색
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    Objective: In this study, the effects of dietary ferulic acid (FA) on the growth traits, antioxidant capacity, and intestinal barrier function of broilers were investigated.Methods: In total, 192 male Arbor Acres broilers were randomly allocated to one of three dietary groups (8 replicates of 8 birds each): control (CON) group (basal diet), FA100 group (basal diet + 100 mg/kg FA), or FA200 group (basal diet + 200 mg/kg FA). The duration of the feeding trial was 42 days.Results: Higher average daily gain (ADG) and lower feed to gain (F/G) ratio during day 0 to day 21 were found in the FA100 and FA200 groups, while higher ADG and lower F/G during day 21 to day 42 were only found in FA200 group, compared to the CON group (p<0.05). Serum levels of malondialdehyde and diamine oxidase on day 21 were lower in the FA100 and FA200 groups and those on day 42 were lower in the FA200 group, while glutathione peroxidase level in the FA100 and FA200 groups on day 21 and that in the FA200 group on day 42 were increased (p<0.05). On day 21, jejunal glutathione synthetase (GSS) expression was upregulated in the FA200 group (p<0.05), while jejunal and ileal expression of nuclear factor erythroid 2-related factor 2 (NRF2) and Occludin as well as ileal expression of glutathione peroxidase 1 (GPX1) and zonula occludens 1 (ZO1) were increased in the FA100 and FA200 groups compared to the CON group (p<0.05). On day 42, mRNA expression of GSS, NRF2, SOD1, and GPX1 in the jejunum and ileum as well as Claudin2 in the jejunum and Occludin in the ileum were increased in the FA200 group (p<0.05).Conclusion: Dietary FA addition could improve the growth performance, antioxidant capacity, and gut integrity of broilers. The current findings provided evidence that the adoption of FA can be a nutrition intervention measure to achieve high-efficient broiler production for poultry farmers.
    • Book : 38(1)
    • Pub. Date : 2025
    • Page : pp.106-116
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025


    • Book : ()
    • Pub. Date : 2025
    • Page :
    • Keyword :
  • 2025

    Objective: This study was conducted to reveal the role of nuclear poly(A) binding protein 1 (PABPN1) in the proliferation of preadipocytes, and to reveal the relationship between PABPN1 and cAMP response element (CRE)-binding protein (CREB) in the regulation of preadipocyte proliferation.Methods: Vectors overexpressing and siRNAs against PABPN1/CREB were transiently transfected into both porcine preadipocytes and mouse 3T3-L1 cells. Preadipocyte proliferation was measured with cell counting kit-8, 5-ethynyl-2′-deoxyuridine, real-time quantitative polymerase chain reaction, Western blotting, and flow cytometry analyses. Additionally, the transcriptional regulation of CREB on PABPN1 were analyzed with dual-luciferase reporter gene and electrophoretic mobility shift assay.Results: Overexpression of PABPN1 inhibits, and knockdown of PABPN1 promotes, the proliferation of both porcine preadipocytes and 3T3-L1 cell lines. PABPN1 overexpression increased, while knockdown decreased, the cell population in the G0/G1 phase. These indicates that PABPN1 repressed preadipocyte proliferation by inhibiting cell cycle progress. Additionally, it was revealed that CREB regulated the expression of PABPN1 through binding to the promoter and that CREB inhibited preadipocyte proliferation by repressed cell cycle progress. Furthermore, we showed that PABPN1 functions as a downstream gene of CREB to regulate the proliferation of preadipocytes.Conclusion: PABPN1 inhibits preadipocyte proliferation by suppressing the cell cycle. We also found that CREB could promote PABPN1 expression by binding to a motif in the promoter. Further analysis confirmed that PABPN1 functions as a downstream gene of CREB to regulate the proliferation of preadipocytes. These results suggest that the CREB/PABPN1 axis plays a role in the regulation of preadipocyte proliferation, which will contribute to further revealing the mechanism of fat accumulation.
    • Book : 38(1)
    • Pub. Date : 2025
    • Page : pp.41-53
    • Keyword :